Role of Bacterial Secretion Systems and Effector Proteins – Insight into the Pathogenicity Mechanisms in Aeromonas

Author:

Matys JoannaORCID,Turska-Szewczuk AnnaORCID,Sroka-Bartnicka AnnaORCID

Abstract

Gram-negative bacteria have developed several nanomachine channels known as type II, III, IV and VI secretion systems that enable export of effector proteins/toxins from the cytosol across the outer membrane to target host cells. Protein secretion systems are critical to bacterial virulence and interactions with other organisms. Aeromonas utilize various secretion machines e.g. two-step T2SS, a Sec-dependent system as well as one-step, Sec-independent T3SS and T6SS systems to transport effector proteins/toxins and virulence factors. Type III secretion system (T3SS) is considered the dominant virulence system in Aeromonas. The activity of bacterial T3SS effector proteins most often leads to disorders in signalling pathways and reorganization of the cell cytoskeleton. There are also scientific reports on the pathogenicity mechanism associated with host cell apopotosis/pyroptosis resulting from secretion of a cytotoxic enterotoxin, i.e. the Act protein, by the T2SS secretion system and an effector protein Hcp by the T6SS system. Type IV secretion system (T4SS) is the system which translocate protein substrates, protein-DNA complexes and DNA into eukaryotic or bacterial target cells. In this paper, the contribution of virulence determinants involved in the pathogenicity potential of Aeromonas is discussed. Considering that the variable expression of virulence factors has a decisive impact on the differences observed in the virulence of particular species of microorganisms, it is important to assess the correlation between bacterial pathogenicity and their virulence-associated genes.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3