Cancer immunotherapy using cells modified with cytokine genes.

Author:

Kowalczyk Dariusz W,Wysocki Piotr J,Mackiewicz Andrzej

Abstract

The ability of various cytokines to hamper tumor growth or to induce anti-tumor immune response has resulted in their study as antitumor agents in gene therapy approaches. In this review we will concentrate on the costimulation of antitumor immune responses using modification of various cell types by cytokine genes. Several strategies have emerged such as (i). modification of tumor cells with cytokine genes ex vivo (whole tumor cell vaccines), (ii). ex vivo modification of other cell types for cytokine gene delivery, (iii). delivery of cytokine genes into tumor microenvironment in vivo, (iv). modification of dendritic cells with cytokine genes ex vivo. Originally single cytokine genes were used. Subsequently, multiple cytokine genes were applied simultaneously, or in combination with other factors such as chemokines, membrane bound co-stimulatory molecules, or tumor associated antigens. In this review we discuss these strategies and their use in cancer treatment as well as the promises and limitations of cytokine based cancer gene therapy. Clinical trials, including our own experience, employing the above strategies are discussed.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ARTIFICIAL INTELLIGENCE AND GENE THERAPY OF BREAST CANCER;Studies in Medical Sciences;2024-02-01

2. Gene Editing and Gene Therapies in Cancer Treatment;Research Anthology on Bioinformatics, Genomics, and Computational Biology;2023-12-29

3. Contemporaneous and upcoming trends in immunotherapy for prostate cancer: review;Annals of Medicine & Surgery;2023-07-07

4. Gene Editing and Gene Therapies in Cancer Treatment;Handbook of Research on Advancements in Cancer Therapeutics;2021

5. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication;Cancer Gene Therapy;2020-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3