Author:
Blasiak Janusz,Sikora Agnieszka,Czechowska Agnieszka,Drzewoski Józef
Abstract
Alloxan can generate diabetes in experimental animals and its action can be associated with the production of free radicals. It is therefore important to check how different substances often referred to as free radical scavengers may interact with alloxan, especially that some of these substance may show both pro- and antioxidant activities. Using the alkaline comet assay we showed that alloxan at concentrations 0.01-50 microM induced DNA damage in normal human lymphocytes in a dose-dependent manner. Treated cells were able to recover within a 120-min incubation. Vitamins C and E at 10 and 50 microM diminished the extent of DNA damage induced by 50 microM alloxan. Pre-treatment of the lymphocytes with a nitrone spin trap, alpha-(4-pyridil-1-oxide)- N-t-butylnitrone (POBN) or ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), which mimics glutathione peroxides, reduced the alloxan-evoked DNA damage. The cells exposed to alloxan and treated with formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results confirmed that free radicals are involved in the formation of DNA lesions induced by alloxan. The results also suggest that alloxan can generate oxidized DNA bases with a preference for purines and contribute to their alkylation.
Publisher
Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献