Specific inhibition of procollagen C-endopeptidase activity by synthetic peptide with conservative sequence found in chordin.

Author:

Lesiak Marta,Augusciak-Duma Aleksandra,Szydlo Anna,Pruszczynska Ksymena,Sieron Aleksander L

Abstract

Procollagen C-endopeptidase (BMP-1) and N-endopeptidase (ADAMTS-2) are key enzymes for correct and efficient conversion of fibrillar procollagens to their self assembling monomers. Thus, they have an essential role in building and controlling the quality of extracellular matrices (ECMs). Here, we tested inhibition of activity of the largest variant of BMP-1, a recombinant mammalian tolloid (mTld), in vitro by three synthetic peptides with conservative amino-acid sequences found in chordin using procollagen type I as a substrate. We also verified the specific action of best inhibitory 16 amino-acid peptide in the procollagen type I cleavage assay with the use of ADAMTS-2 (procollagen N-endopeptidase). Subsequently, we determined the critical residues and minimal sequence of six amino acids in the original 16 amino-acid peptide required to maintain the inhibitory potential. Studies on the interactions of 6 and 16 amino acid long peptides with the enzyme revealed their binding to non-catalytic, regulatory domains of mTld; the inhibitory activity was not due to the competition of peptides with the substrate for the enzyme active center, because mTld did not cleave the peptides. However, in the presence of mTld both peptides underwent cyclization by disulfide bond formation. Concluding, we have shown that procollagen C-endopeptidase may be specifically blocked via its non-catalytic domains by synthetic peptide consisting of 6 amino acids in the sequence found in highly conservative region of chordin. Thus, we hypothesize that the 6 amino-acid peptide could be a good candidate for anti-fibrotic drug development.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3