Design of a knowledge-based force field for off-lattice simulations of protein structure.

Author:

Liwo A,Ołdziej S,Kaźmierkiewicz R,Groth M,Czaplewski C

Abstract

Prediction of protein structure from amino-acid sequence still continues to be an unsolved problem of theoretical molecular biology. One approach to solve it is to construct an appropriate (free) energy function that recognizes the native structures of some selected proteins (whose native structures are known) as the ones distinctively lowest in (free) energy and then to carry out a search of the lowest-energy structure of a new protein. In order to reduce the complexity of the problem and the cost of energy evaluation, the so-called united-residue representation of the polypeptide chain is often applied, in which each amino-acid residue is represented by only a few interaction sites. Once the global energy minimum of the simplified chain has been found, the all-atom structure can easily and reliably be constructed. The search of the lowest-energy structure is usually carried out by means of Monte Carlo methods, though use of more efficient global-optimization methods, especially those of deformation of original energy surface is potentially promising. Monte Carlo search of the conformational space can be accelerated greatly, if the chain is superposed on a discrete lattice (the on-lattice approach). On the other hand, the on-lattice approach prohibits the use of many efficient global-optimization methods, because they require both energy and its space derivatives. The on-lattice methods in which the chain is embedded in the continuous 3D space are, therefore, also worth developing. In this paper we summarize the work on the design and implementation of an off-lattice united-residue force field that is underway in our group, in cooperation with Professor HA. Scheraga of Cornell University, U.S.A.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of Chains as a Tool to Study Thermomechanical Properties of Proteins;Perspectives in Dynamical Systems II: Mathematical and Numerical Approaches;2021

2. Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations;Entropy;2020-04-01

3. Protein structure refinement by optimization;Proteins: Structure, Function, and Bioinformatics;2015-07-21

4. Recent Advances in Transferable Coarse-Grained Modeling of Proteins;Advances in Protein Chemistry and Structural Biology;2014

5. Advances in protein structure prediction and de novo protein design: A review;Chemical Engineering Science;2006-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3