Ergosterol biosynthesis inhibition: a target for antifungal agents.

Author:

Barrett-Bee K,Dixon G

Abstract

The isoprenoid sterols play a crucial role in the viability of all fungi; those unable to synthesise ergosterol because of inhibition, growth conditions or mutation must take it up from the environment. A range of compound types have been discovered which interfere with the biosynthetic pathway from acetate to ergosterol and these compounds have antifungal actions. Inhibition of several of the steps has yielded agents which have been used with great success as medical and agrochemical agents. The most important biosynthetic steps that have been exploited are inhibition of squalene epoxidase, (the allylamines and tolnaftate) C14 demethylation (the azoles), delta 7,8 isomerase and delta 14 reductase which are inhibited by the morpholines. Recent research has shown that inhibition of C24 methyltransferase and C4 demethylation also yield antifungal agents. Combination studies demonstrate that synergy between agents of different types can be measured. Fungicidal effects were observed when a combination of two fungistatic agents was used.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3