The role of mutation frequency decline and SOS repair systems in methyl methanesulfonate mutagenesis.

Author:

Grzesiuk E

Abstract

Methyl methanesulfonate (MMS) is an SN2 type alkylating agent which predominantly methylates nitrogen atoms in purines. Among the methylated bases 3meA and 3meG are highly mutagenic and toxic. The excision of these lesions leads to the formation of apurinic (AP) sites and subsequently to AT-->TA or GC-->TA transversions. The in vivo method based on phenotypic analysis of Arg+ revertants of Escherichia coli K12 and sensitivity to T4 nonsense mutants has been used to estimate the specificity of MMS induced mutations. In the E. coli arg-his-thr- (AB1157) strain MMS induces argE3(oc)-->Arg+ revertants of which 70-80% arise by supL suppressor formation as a result of AT-->TA transversions. The remaining 20-30% arise by supB and supE(oc) suppressor formation as a result of GC-->AT transitions. The level of AT-->TA transversions decreases during starvation. This is a consequence of action of the repair mechanism called mutation frequency decline. This system which is a transcription coupled variant of nucleotide excision repair was discovered in UV induced mutations. We describe the mutation frequency decline phenomenon for MMS mutagenesis. MMS is a very efficient inducer of the SOS response and a umuDC dependent mutagen. In MMS treated E. coli cells mutated in umuDC genes the class of AT-->TA transversions dramatically diminishes. A plasmid bearing UmuD(D')C proteins can supplement chromosomal deletion of umuDC operon: a plasmid harbouring umuD'C is more efficient in comparison to that harbouring umuDC. Moreover, plasmids isolated from MMS treated and transiently starved E. coli AB1157 cells harbouring umuD(D')C genes have shown the repair of AP sites by a system which involves the UmuD'C or at least UmuD' protein.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3