About the penetration of the diurnal and annual temperature variation into the subsurface

Author:

Buntebarth Günter,Pinheiro Maria,Sauter Martin

Abstract

In order to evaluate the effect of the penetration of diurnal and annual wave temperature into the subsurface, the temperature has been monitored at an hourly recording frequency at depths of 40, 60 and 78 m between summer 2016 and summer 2018, at the geothermal experimental test site “Neutra” of the Georg-August-University of Göttingen, Germany. It has been asserted that the mean temperature gradient between 40 and 78 m continuously increases, because the temperature decreases at 40 m. The decrease can be explained by an increase in vegetation cover (trees, shrubs, etc.) in the perimeter of the test area, increasing the absorption of solar energy by the leaves. During the phenological growth season the diurnal temperature variation at the surface can be recorded in phase with opposite sign, even at a depth of 40 m, and the drop of the temperature at 40 m, when surface temperature reaches a value of nearly 9 °C, can be observed during small events of eco-dormancy during winter. The annual surface temperature variation of ±10 K induce the same effect with an amplitude of ±2mK at 40 m. It is stated that the dormant state of the vegetation cells is the reason of the annual variation of the residual temperature. At greater depths groundwater flows prevail and influence the temperature according to the structural properties of the encountered lithologies and the precipitation. The vegetation can transfer the daily and seasonal temperature variation to larger depths than expected based on the theory of heat conduction. This timely variation of the temperature gradient demonstrates that the determination of the terrestrial heat flow density is subject to several impacts induced from the surface as well as from the Earth’s interior. As a conclusion, temperature gradients determined at shallow depths may be influenced by changes in surface coverage.

Publisher

IJTHFAG Journal

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3