Abstract
Geothermal heat pump systems (GHP), producing from shallow resources, are the spearhead of geothermal achievement and development. Global heat delivery grew exponentially to 600 PJ in 2020. GHP is the fastest growing segment in geothermal technology and one of the fastest growing application of renewable energy technologies worldwide. Other, various direct-use applications like space heating, bathing and swimming/wellness, industrial, agricultural (especially greenhouses) and aquacultural applications are based on deep, hydrothermal resources. These varieties produced worldwide 420 PJ heat in 2020; the average linear growth was, from 1995 on, about 10 % per year. It can be expected that this trend continues. Power generation, also from deep, hydrothermal resources, develops slowly but steadily, with an average growth-rate of 5 % per year, producing 95.0 TWh in 2020 in 30 countries. When comparing with other renewable power plant technologies (hydro, biomass, solar PV, wind), geothermal falls far behind – both in installed capacity (GWe) and in production (TWh). Only the annual availability of geothermal electricity is the highest among the renewables (60 %). Low geothermal productivity and growth-rate is due to extensive investments for solar PV and wind, which are by orders of magnitude higher than for geothermal power. The technology of Enhanced Geothermal Systems (EGS), based on deep, petrothermal resources, could be a game-changer. Requirements, problems and research goals to find solutions are presented.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献