Adapting and Extending a Typology to Identify Vaccine Misinformation on Twitter

Author:

Jamison Amelia1,Broniatowski David A.1,Smith Michael C.1,Parikh Kajal S.1,Malik Adeena1,Dredze Mark1,Quinn Sandra C.1

Affiliation:

1. Amelia M. Jamison, Kajal S. Parikh, and Adeena Malik are with the Maryland Center for Health Equity, School of Public Health, University of Maryland, College Park. David A. Broniatowski and Michael C. Smith are with the Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, and Institute for Data, Democracy, and Politics, The George Washington University, Washington, DC. Mark Dredze is with the Department of Computer Science, Whiting School of Engineering...

Abstract

Objectives. To adapt and extend an existing typology of vaccine misinformation to classify the major topics of discussion across the total vaccine discourse on Twitter. Methods. Using 1.8 million vaccine-relevant tweets compiled from 2014 to 2017, we adapted an existing typology to Twitter data, first in a manual content analysis and then using latent Dirichlet allocation (LDA) topic modeling to extract 100 topics from the data set. Results. Manual annotation identified 22% of the data set as antivaccine, of which safety concerns and conspiracies were the most common themes. Seventeen percent of content was identified as provaccine, with roughly equal proportions of vaccine promotion, criticizing antivaccine beliefs, and vaccine safety and effectiveness. Of the 100 LDA topics, 48 contained provaccine sentiment and 28 contained antivaccine sentiment, with 9 containing both. Conclusions. Our updated typology successfully combines manual annotation with machine-learning methods to estimate the distribution of vaccine arguments, with greater detail on the most distinctive topics of discussion. With this information, communication efforts can be developed to better promote vaccines and avoid amplifying antivaccine rhetoric on Twitter.

Publisher

American Public Health Association

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3