Numerical Simulation of Temporal Variability of Methane Emissions from Mozhaysk Reservoir

Author:

Stepanenko V. M.1,Lomov V. A.2,Grechushnikova M. G.3

Affiliation:

1. Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

2. Lomonosov Moscow State University; A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences

3. Lomonosov Moscow State University; Institute of Water Problems, Russian Academy of Sciences

Abstract

Estimates of methane emission from the Mozhaysk reservoir surface were carried out using the mathematical model LAKE2.3. The average emission value is 361 tC per year, the average flux = 37.7 mgC–CH4 m–2 day–1. Comparison of the obtained estimates with in situ measurements revealed, that the methane emission and specific flux according to the model are in good agreement with the observations data. The ebullition makes the largest contribution to the total emission. During the heating period, an increase of methane emission is observed with a maximum before the autumn mixing stage. In the course of numerical experiments with the model, it was found that the amplitude of methane fluxes into the atmosphere is associated with fluctuations in atmospheric pressure, and the most significant emissions peaks associated with water level drawdowns. Effective method for calibrating the diffusion component of the methane flux into the atmosphere is the potential rate of methane oxidation in the Michaelis-Menten reaction, and for ebullition it is the methane generation parameter in bottom sediments — q10. For the described numerical experiments, the article presents the values of the annual emissions of methane into the atmosphere. 

Publisher

Saint-Petersburg Research Center of the Russian Academy of Science

Subject

Geophysics,Condensed Matter Physics,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3