1. I. A. Moloshnikov, A. G. Sboev, R. B. Rybka, and D. V. Gydovskikh, “An algorithm of finding thematically similar documents with creating context-semantic graph based on probabilistic-entropy approach,” in 4th International Young Scientist Conference on Computational Science, Proc. Comput. Sci. 66, 297–306 (2015).
2. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv:1301.3781 (2013).
3. James C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Geosci. Surv. 10, 191–203 (1984).
4. F. Pedregosa, G. Varoquaux, et al., “Scikit-learn: machine learning in Python,” J. Machine Learning Res. 12, 2825–2830 (2011).
5. R. B. Rybka, A. G. Sboev, I. A. Moloshnikovl, and D. V. Gydovskikh, “Morpho-syntactic parsing based on neural networks and corpus data,” in Proceedings of the Conference on Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT AINL-ISMW FRUCT, 2015, pp. 89–95.