1. Buchberger, B., Algorithm for Finding a Basis for the Residue Class Ring of Zero-Dimensional Polynomial Ideal, PhD Dissertation, Innsbruck, Univ. of Innsbruck, Inst. for Mathematics, 1965 (in German).
2. Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Recent Trends in Multidimensional System Theory, Bose, N.K., Ed., Dordrecht: Reidel, 1985, pp. 184–232.
3. Gerdt, V.P. and Blinkov, Yu.A., Involutive Bases of Polynomial Ideals, Math. Comput. Simulation, 1998, vol. 45, pp. 519–542. arXiv:math.AC/9912027; Minimal Involutive Bases. Math. Comput. Simulation, pp. 543–560. arXiv:math.AC/9912029.
4. Gerdt, V.P., Involutive Algorithms for Computing Gröbner Bases, Computational Commutative and Non-Commutative Algebraic Geometry, Cojocaru, S., Pfister, G., and Ufnarovski, V., Eds., Amsterdam: IOS, 2005, pp. 199–225. arXiv:math.AC/0501111.
5. Faugère, J.C., A New Efficient Algorithm for Computing Gröbner Bases (F 4), Pure Applied Algebra, 1999, vol. 139, nos. 1–3, pp. 61–68.