Weak Localization of Light in a Magneto-active Medium

Author:

Gorodnichev E. E.,Rogozkin D. B.

Abstract

The interference contribution to the optical conductance (total transmittance) of a sample of a disordered Faraday medium is calculated. The suppression of wave interference in a magnetic field is shown to be due to helicity-flip scattering events. The magnetic field does not destroy the interference of waves with a given helicity, but suppresses it if the helicity changes along different parts of the wave trajectory. This leads to a decrease in the interference contribution to the conductance with increasing the magnetic field. A similar phenomenon, negative magnetoresistance, is known as a consequence of weak localization of electrons in metals with impurities. It is found that, as the magnetic field increases, the change in the interference correction to the optical conductance tends to a certain limiting value, which depends on the ratio of the transport mean free path to the helicity-flip scattering mean free path. We also discuss the possibility of controlling the transition to the regime of strong “Anderson” localization in the quasi-one-dimensional case by means of the field.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3