Author:
Bakhareva O. A.,Sergeev V. Yu.,Sharov I. A.
Abstract
The investigation of cold secondary plasma clouds near pellets ablating in the hot plasma of magnetic confinement devices (tokamaks and stellarators) provides valuable information on the physical characteristics of a pellet cloud. In this work, the characteristic sizes of emitting clouds around fusible polystyrene pellets and refractory carbon pellets have been analyzed. The calculation of the ionization length of C+ ions in both carbon and hydrocarbon clouds has shown that the contribution of only hot electrons is insufficient to ensure the experimentally observed decay lengths of the CII line intensity. Taking into account the strong shielding of the electron flux of the background plasma in the hydrocarbon pellet cloud, the ionization of C+ ions in this cloud is determined predominantly by electrons of the cold plasma of the cloud. Shielding near a refractory carbon pellet is weak because its ablation rate is lower. The contributions from hot electrons of the surrounding plasma and cold electrons of the pellet cloud to the ionization of C+ ions are comparable in the case of carbon pellets.
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献