Optical Levitation of Mie-Resonant Silicon Particles in the Field of Bloch Surface Electromagnetic Waves

Author:

Shilkin D. A.,Fedyanin A. A.

Abstract

Manipulating the motion of nanoparticles in liquid media using the near field of integrated optical elements is associated with enhanced viscous friction and an increased probability of adhesion. One of the ways to overcome these difficulties is the search for systems with a minimum of potential energy located at a distance from the structure surface. In this paper, we numerically study the forces acting on Mie-resonant silicon particles in water in the evanescent field of a Bloch surface wave and propose a method for localizing such particles at a controlled distance from the surface. For this purpose, we use surface waves at two optical frequencies, which provide different signs of interaction with the particle and different depths of field penetration into the medium. As an example, we consider a silicon sphere with a diameter of 130 nm in the field of laser radiation with wavelengths of 532 and 638 nm and a total power of 100 mW; taking into account the Brownian motion, we show that the proposed method provides stable particle localization at an equilibrium distance to the surface, adjustable in the range from 60 to 100 nm.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3