Joint Intercalation of Ultrathin Fe and Co Films under a Graphene Buffer Layer on a SiC(0001) Single Crystal

Author:

Filnov S. O.,Estyunin D. A.,Klimovskikh I. I.,Makarova T. P.,Koroleva A. V.,Rybkina A. A.,Chumakov R. G.,Lebedev A. M.,Vilkov O. Yu.,Shikin A. M.,Rybkin A. G.

Abstract

The joint intercalation of Co and Fe atoms under a graphene buffer layer synthesized on a SiC(0001) single crystal has been studied. Intercalation has been performed by means of the alternating deposition of ultrathin Fe and Co metal films on the substrate heated to 450°C with the subsequent heating to 600°C in 15 min. It has been shown that Co and Fe atoms under these conditions are intercalated under graphene, forming compounds with silicon and with each other. The existence of a magnetic order in the system up to room temperature has been demonstrated using a superconducting quantum interferometer. A possible stoichiometry of the formed alloys has been analyzed using data on the shape and magnitude of hysteresis loops. In addition, it has been found that Fe and Co in the system exposed to the atmosphere are not oxidized. Thus, graphene protects the formed system. This study makes contribution to the investigation of graphene in contact with magnetic metals and promotes its application in spintronic and nanoelectronic devices.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3