Superradiant Phase Transition in Microstructures with a Complex Network Architecture

Author:

Bazhenov A. Yu.,Nikitina M. M.,Alodjants A. P.

Abstract

A new concept of topological organization of microstructures that maintain the ultrastrong coupling of two-level systems to a photon field and have the topology of a network (graph) with a power-law node degree distribution has been proposed. A phase transition to the superradiant state, which leads to the formation of two dispersion branches of polaritons and is accompanied by the appearance of a nonzero macroscopic polarization of two-level systems, has been studied within the mean field theory. It has been found that the specific behavior of such a system depends on the statistical characteristics of the network structure, more precisely, on the normalized second moment $$\zeta \equiv \langle {{k}^{2}}\rangle {\text{/}}\langle k\rangle $$ of the distribution of node degrees. It has been shown that the Rabi frequency can be significantly increased in the anomalous regime of the network structure, where ζ increases significantly. The multimode (waveguide) structure of the interaction between matter and field in this regime can establish a ultrastrong coupling, which is primarily responsible for the high-temperature phase transition.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3