Diversity and Evolution of Mitochondrial Translation Apparatus
-
Published:2023-11
Issue:11
Volume:88
Page:1832-1843
-
ISSN:0006-2979
-
Container-title:Biochemistry (Moscow)
-
language:en
-
Short-container-title:Biochemistry Moscow
Author:
Baleva Mariya V.,Piunova Ulyana E.,Chicherin Ivan V.,Levitskii Sergey A.,Kamenski Piotr A.
Abstract
Abstract
The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.
Publisher
Pleiades Publishing Ltd
Subject
Biochemistry,General Medicine,Biochemistry, Genetics and Molecular Biology (miscellaneous),Biophysics,Geriatrics and Gerontology
Reference73 articles.
1. Andersson, S. G. E., Zomorodipour, A., Andersson, J. O., Sicheritz-Pontén, T., Alsmark, U. C. M., Podowski, R. M., Näslund, A. K., Eriksson, A. S., Winkler, H. H., and Kurland, C. G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 396, 133-140,
https://doi.org/10.1038/24094. 2. Read, A. D., Bentley, R. ET., Archer, S. L., Dunham-Snary, K. J. (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology, Redox Biol., 47, 102164,
https://doi.org/10.1016/j.redox.2021.102164. 3. Kastaniotis, A. J., Autio, K. J., Kerätär, J. M., Monteuuis, G., Mäkelä, A. M., Nair, R. R., Pietikäinen, L. P., Shvetsova, A., Chen, Z., and Hiltunen, J. K. (2017) Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 39-48,
https://doi.org/10.1016/j.bbalip.2016.08.011. 4. De Vitto, H., Arachchige, D. B., Richardson, B. C., and French, J. B. (2021) The intersection of purine and mitochondrial metabolism in cancer, Cells, 10, 2603,
https://doi.org/10.3390/cells10102603. 5. Sloan, D. B., Warren, J. M., Williams, A. M., Wu, Z., Abdel-Ghany, S. E., Nair, R. R., Pietikäinen, L. P., Shvetsova, A., Chen, Z., and Hiltunen, J. K. (2018) Cytonuclear integration and co-evolution, Nat. Rev. Genet., 19, 635-648,
https://doi.org/10.1038/s41576-018-0035-9.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|