In-Situ Stress Prediction Model for Tight Sandstone Based on XGBoost Algorithm
-
Published:2024-04
Issue:2
Volume:60
Page:341-356
-
ISSN:1062-7391
-
Container-title:Journal of Mining Science
-
language:en
-
Short-container-title:J Min Sci
Publisher
Pleiades Publishing Ltd
Reference34 articles.
1. Bai X., Zhang D., Wang H., Li S., and Rao Z., A Novel In-Situ Stress Measurement Method Based on Acoustic Emission Kaiser Effect: A Theoretical and Experimental Study, Royal Soc. Open Sci., 2018, vol. 5, no. 10, pp 488–504. 2. Ma N. Study on Method and Application of Geostress Prediction with Seismic Data China University of Petroleum, East China, 2020. 3. Ito T., Funato A., Lin W., Doan M., Boutt D.F., Kano Y., Ito H., Saffer D., McNeill L.C., Byrne T., and Moe K.T. Determination of Stress State in Deep Subsea Formation by Combination of Hydraulic Fracturing In-Situ Test and Core Analysis: A Case Study in the IODP Expedition 319, J. Geoph. Res.: Solid Earth, 2013, vol. 118, no. 3, pp 1203–1215. 4. Chang, C., Jo, Y., Oh, Y., Lee, T.J., and Kim, K.Y., Hydraulic Fracturing In-Situ Stress Estimations in a Potential Geothermal Site, Seokmo Island, South Korea, J. Rock Mech. Rock Eng., 2014, vol. 47, no. 5, pp. 1793–1808. 5. Qin, X., Chen, Q., Wu, M., Tan, C., Feng, C., and Meng, W., In-Situ Stress Measurements along the Beichuan–Yingxiu Fault after the Wenchuan Earthquake, Eng. Geol., 2015, vol. 194, pp. 114–122.
|
|