1. D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature (Nauka, Moscow, 1967), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 90 [Proc. Steklov Inst. Math. 90 (1967)].
2. V. I. Arnol’d and A. B. Givental’, “Symplectic Geometry,” in Dynamical Systems-4 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Fund. Napr. 4, pp. 5–139; Engl. transl. in Dynamical systems IV (Springer, Berlin, 1990), Encycl. Math. Sci. 4, pp. 1–136.
3. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1998; Faktorial, Moscow, 1999).
4. A. Agrachev and R. Gamkrelidze, “Symplectic Methods for Optimization and Control,” in Geometry of Feedback and Optimal Control, Ed. by B. Jakubczyk and W. Respondek (M. Dekker, New York, 1998), pp. 19–77.
5. A. A. Agrachev and R. V. Gamkrelidze, “Feedback-Invariant Optimal Control Theory and Differential Geometry. I: Regular Extremals,” J. Dyn. Control Syst. 3(3), 343–389 (1997).