Author:
Zhang X.,Su L.,Revin D. O.
Abstract
AbstractWe prove the existence of a triple $ ({\mathfrak{X}},G,H) $, where $ {\mathfrak{X}} $
is a class of finite groups consisting of groups of odd order which is complete
(i.e., closed under subgroups, homomorphic images, and extensions),
$ G $ is a finite simple group, $ H $ is an $ {\mathfrak{X}} $-maximal subgroup in $ G $,
and $ H $ is not pronormal in $ G $.
Reference18 articles.
1. Hall P., Philip Hall
Lecture Notes on Group Theory—Part VI, WUSTL Digital Gateway Image Collections & Exhibitions, Cambridge (1951) (http://omeka.wustl.edu/omeka/items/show/10788).
2. De Giovanni F. and Trombetti M., “Pronormality in group theory,” Adv. Group Theory Appl., vol. 9, 123–149 (2020).
3. Kondrat’ev A.S., Maslova N.V., and Revin D.O., “On the pronormality of subgroups of odd index in finite simple groups,” in: Groups St. Andrews 2017 in Birmingham, Cambridge University, Cambridge (2019), 406–418 (London Math. Soc. Lect. Note Ser.; vol. 455).
4. Guo W. and Revin D.O., “Pronormality and submaximal $ {\mathfrak{X}} $-subgroups on finite groups,” Commun. Math. Stat., vol. 6, no. 3, 289–317 (2018).
5. Wielandt H., “Zusammengesetzte Gruppen: Hölders Programm heute,” in: The Santa Cruz Conf. on Finite Groups, Univ. California, Santa Cruz, 1979. Proc. Sympos. Pure Math., Amer. Math. Soc., Providence (1980), 161–173 (Proc. Symp. Pure Math.; vol. 37).