Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the $ \mathcal{P} $-Differentiability of Sobolev Mappings
-
Published:2023-07
Issue:4
Volume:64
Page:819-835
-
ISSN:0037-4466
-
Container-title:Siberian Mathematical Journal
-
language:en
-
Short-container-title:Sib Math J
Author:
Basalaev S. G.ORCID,
Vodopyanov S. K.ORCID
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference25 articles.
1. García-Cuerva J. and Gatto A.E., “Lipschitz spaces and Calderón–Zygmund
operators associated to non-doubling measures,” Publ. Mat., vol. 49, no. 2, 285–296 (2005).
2. Vodopyanov S.K., “Monotone functions and quasiconformal mappings on Carnot groups,” Sib. Math. J., vol. 37, no. 6, 1269–1295 (1996).
3. Monti R. and Morbidelli D., “Trace theorems for vector fields,” Math. Z., vol. 239, 747–776 (2002).
4. Danielli D., Garofalo N., and Nhieu D.-M., Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization
of the Trace Spaces of Sobolev Functions in Carnot–Carathéodory Spaces, Amer. Math. Soc., Providence (2006) (Mem. Amer. Math. Soc.; vol. 182).
5. Capogna L. and Garofalo N., “Ahlfors type estimates for perimeter measures in Carnot–Carathéodory spaces,” J. Geom. Anal., vol. 16, no. 3, 455–497 (2006).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献