Author:
Schweigert I. V.,Zakrevsky Dm. E.,Milakhina E. V.,Gugin P. P.,Biryukov M. M.,Patrakova E. A.,Troitskaya O. S.,Koval O. A.
Abstract
Abstract
Low-temperature plasma jets at atmospheric pressure generated by sinusoidal and positive pulsed voltages interact differently with the treated surface. In the experiment and in numerical simulations, we compare the operating modes of helium plasma jets for these types of operating voltages. The discharge current on the treated surface over time and the surface heating are studied for different discharge parameters acceptable for anticancer therapy. The intensity of the emission spectrum is analyzed to improve the effectiveness of the plasma jet. Surface heating is controlled in order to meet the safety conditions of plasma exposure to biological objects. For the case of pulsed voltage the effect of voltage pulse duration on the intensity of plasma-surface interaction is discussed. The results on cancer cells A549 and MCF-7 demonstrate the high efficiency of the cold plasma jet generated at found optimal modes.
Subject
Physics and Astronomy (miscellaneous),Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献