Skip to main content
Log in

1550 nm Range High-Speed Single-Mode Vertical-Cavity Surface-Emitting Lasers

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of complex studies of static and dynamic performance of 1550 nm range VCSELs, which were created by direct bonding (wafer fusion technique) InAlGaAs/InP optical cavity wafers with AlGaAs/GaAs distributed Bragg reflector wafers grown by molecular beam epitaxy, are presented. The VCSELs with a buried tunnel junction diameter less than 7 μm demonstrated a single-mode lasing with a side-mode suppression ratio more than 40 dB; however, at diameters less than 5 μm, a sharp increase in the threshold current is observed. It is associated to the appearance of a saturable absorber due to penetration of optical mode into the non-pumped regions of the active region. The maximum single-mode output optical power and the –3 dB modulation bandwidth reached 4.5 mW and 8 GHz, respectively, at 20°C. The maximum data rate at 20°C under non-return-to-zero on-off keying modulation was 23 Gb/s for a short-reach link based on single-mode fiber SMF-28. As the length of the optical link increased up to 2000 m, the maximum data rate dropped to 18 Gbit/s. The main factors affecting the high-speed operation and data transmission range are defined and discussed, and the further ways to overcome themit are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. VCSEL Industry: Communication and Sensing, The ComSoc Guides to Communications Technologies, ed. by B.D. Padulla-parthi, J. Tatum, K. Iga (Wiley-IEEE Press, Piscataway, N.J., USA, 2022). ISBN: 978-1-119-78221-6.

    Google Scholar 

  2. L. Zhang, J. Chen, E. Agrell, R. Lin, L. Wosinska. J. Lightwave Technol., 38 (1), 18 (2020). https://doi.org/10.1109/JLT.2019.2941765

    Article  ADS  CAS  Google Scholar 

  3. A. Larsson, P. Westbergh, J.S. Gustavsson, E. Haglund, E. P. Haglund. In: Proc. SPIE OPTO (San Francisco, CA, USA, Mar. 2015) v. 9381, p. 93810D-1. https://doi.org/10.1117/12.2082614

  4. L. Zhang, J. Van Kerrebrouck, R. Lin, X. Pang, A. Udalcovs, O. Ozolins, S. Spiga, M.-C. Amann, G. Van Steenberge, L. Gan, M. Tang, S. Fu, R. Schatz, S. Popov, D. Liu, W. Tong, S. Xiao, G. Torfs, J. Chen, J. Bauwelinck, X. Yin. J. Lightwave Technol., 37 (2), 380 (2019). https://doi.org/10.1109/JLT.2018.2851746

    Article  ADS  CAS  Google Scholar 

  5. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.‑J. Park, B.-S. Yoo. IEEE Phot. Technol. Lett., 18 (16), 1717 (2006). https://doi.org/10.1109/LPT.2006.879940

    Article  ADS  CAS  Google Scholar 

  6. W. Hofmann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf, D. Bimberg, M.‑C. Amann, C. Chang-Hasnain. Opt. Express, 17(20), 17547 (2009). https://doi.org/10.1364/OE.17.017547

    Article  ADS  CAS  PubMed  Google Scholar 

  7. W. Hofmann. IEEE Photonics J., 2 (5), 802 (2010). https://doi.org/10.1109/JPHOT.2010.2055554

    Article  ADS  Google Scholar 

  8. S. Spiga, W. Soenen, A. Andrejew, D.M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, M.-C. Amann. J. Lightwave Technol., 35 (4), 727 (2017). https://doi.org/10.1109/JLT.2016.2597870

    Article  ADS  CAS  Google Scholar 

  9. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.‑C. Amann. J. Lightwave Technol., 35 (15), 3130 (2017). https://doi.org/10.1109/jlt.2017.2660444

    Article  ADS  CAS  Google Scholar 

  10. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon. Opt. Express, 19 (18), 16996 (2011). https://doi.org/10.1364/OE.19.016996

    Article  ADS  CAS  PubMed  Google Scholar 

  11. A. V. Babichev, L. Y. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, A. Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017). https://doi.org/10.1109/JQE.2017.2752700

    Article  Google Scholar 

  12. T. Grundl, P. Debernardi, M. Muller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, M.-C. Amann. IEEE J. Select. Top. Quant. Electron., 19 (4), 1700913. https://doi.org/10.1109/JSTQE.2013.2244572

  13. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, E. Kapon. IEEE Phot. Technol. Lett., 25 (16), 1555 (2013). https://doi.org/10.1109/LPT.2013.2271041

    Article  ADS  CAS  Google Scholar 

  14. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. Opt. Express, 22 (26), 32180 (2014). https://doi.org/10.1364/OE.22.032180

    Article  ADS  CAS  PubMed  Google Scholar 

  15. E. S. Kolodeznyi, S. S. Rochas, A. S. Kurochkin, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinskii, D. V. Denisov, Yu. K. Bobretsova, A. A. Klimov, S. A. Blokhin, K. O. Voropaev, A. S. Ionov. Opt. Spectr., 125, 238 (2018). https://doi.org/10.1134/S0030400X18080143

    Article  ADS  CAS  Google Scholar 

  16. C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. Mc Nulty, M. Nickerson, J. P. Donnelly, K. Creedon, F. Capasso. IEEE J. Select. Top. Quant. Electron., 23 (6), Art no. 1200413 (2017). https://doi.org/10.1109/JSTQE.2017.2677899

    Article  Google Scholar 

  17. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuz’menkov, A. P. Vasil’ev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov. Techn. Phys. Lett., 46 (17), 854 (2020). https://doi.org/10.1134/S1063785020090023

    Article  ADS  CAS  Google Scholar 

  18. S. A. Blokhin, A. V. Babichev, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. A. Blokhin, S. S. Rochas, D. V. Denisov, K. O. Voropaev, A. S. Ionov, N. N. Ledentsov, A. Yu. Egorov. Electron. Lett., 57 (18), 697 (2021). https://doi.org/10.1049/ell2.12232

    Article  ADS  CAS  Google Scholar 

  19. S. A. Blokhin, A. V. Babichev, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. A. Blokhin, M. A. Bobrov, N. A. Maleev, V. V. Andryushkin, D. V. Denisov, K. O. Voropaev, I. O. Zhumaeva, V. M. Ustinov, A. Yu. Egorov, N. N. Ledentsov. IEEE J. Quant. Electron., 58 (2), Art 2400115 (2022). https://doi.org/10.1109/JQE.2022.3141418

    Article  CAS  Google Scholar 

  20. S. A. Blokhin, V. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov. Semiconductors, 54 (10), 1276 (2020). https://doi.org/10.1134/S1063782620100048

    Article  ADS  CAS  Google Scholar 

  21. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler. M.‑C. Amann. Appl. Phys. Lett., 76 (16), 2179 (2000). https://doi.org/10.1063/1.126290

    Article  ADS  CAS  Google Scholar 

  22. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, N. A. Maleev, A. G. Kuz’menkov, A. P. Vasil’ev, S. S. Rochas, A. V. Babichev, I. I. Novikov, L. Ya. Karachinskiy, A. G. Gladyshev, D. V. Denisov, K. O. Voropaev, A. Yu. Egorov, V. M. Ustinov. Pis’ma ZhTF, 47 (22), 3 (2021).

    Google Scholar 

  23. K. O. Voropaev, B. I. Seleznev, A. Yu. Prokhorov, A. S. Ionov, S. A. Blokhin. J. Phys.: Conf. Ser., 1658, 012069 (2020). https://doi.org/10.1088/1742-6596/1658/1/012069

    Article  CAS  Google Scholar 

  24. J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, V.-C. Amann. Opt. Express, 16 (25), 20789 (2008). https://doi.org/10.1364/OE.16.020789

    Article  ADS  CAS  PubMed  Google Scholar 

  25. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuz’menkov, A. P. Vasil’ev, N. A. Maleev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinskiy, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov. Pis’ma ZhTF, 46 (24), 49 (2020).

    Google Scholar 

  26. V. V. Lysak, K. S. Chang, Y. T. Lee. Appl. Phys. Lett., 87(23), Art. no. 231118 (2003). https://doi.org/10.1063/1.2140886

    Article  ADS  CAS  Google Scholar 

  27. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences, ed. by R. Michalzik (Springer, Berlin–Heidelberg, 2013). https://doi.org/10.1007/978-3-642-24986-0

Download references

Funding

The study has been performed by a group of authors from ITMO University and financed by the program “Priority 2030” in terms of studies of the number of the dynamic characteristics, as well as with the support of the Ministry of Science and Higher Education of the Russian Federation, the research project no. 2019–1442 in terms of a number of studies of the static characteristics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Babichev, A.V., Karachinsky, L.Y. et al. 1550 nm Range High-Speed Single-Mode Vertical-Cavity Surface-Emitting Lasers. Semiconductors 57, 221–230 (2023). https://doi.org/10.1134/S1063782623070072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623070072

Keywords:

Navigation