Characteristics of Vacuolar Inclusions in Coelastrella rubescens Namsu R1 Green Microalgae Cells in Low- and High-Intensity Light

Author:

Zaitseva A. A.,Zaitsev P. A.,Gorelova O. A.,Bakhareva D. A.,Lobakova E. S.

Abstract

Abstract Coelastrella rubescens Kaufnerová & Eliás (Chlorophyceae) is a green, single-celled algae that lives in the terrestrial-air environment. Under stress conditions, its cells go into a state characterized by low photosynthetic activity and high content of reserve lipids and secondary carotenoids. For the first time, a comparative morphological, ultrastructural, and elemental analysis of vacuolar inclusions in the C. rubescens NAMSU R1 strain when cultivated on a mineral medium under conditions of low and high (causing stress) light intensity. Microalgae cells stained with the fluorescent dye DAPI showed signs of the presence of polyphosphates. Polarization microscopy in cells of C. rubescens has identified structures capable of refracting polarized light, which is typical of crystals. Cell analysis of C. rubescens with the transmission electron microscopy (TEM) method revealed the presence of various vacuoles with heterogeneous contents (autophagic bodies, crystalloids, and rounded globules of inhomogeneous electron density). With the exception of autophagic bodies noted in cells only in bright light, these inclusions were characteristic of microalgae cells, regardless of the intensity of illumination. The elemental composition of vacuolar inclusions was characterized by TEM in combination with energy-dispersive X-ray spectroscopy: the predominant content of nitrogen, phosphorus, or both elements simultaneously was established in them. The potential physiological role of C. rubescens vacuolar inclusions is discussed.

Publisher

Pleiades Publishing Ltd

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3