Chromato-Mass-Spectrometric Identification of Glycosides of Phenylethylamides of Hydroxycinnamic Acids in a Suspension Cell Culture of Mandragora turcomanica

Author:

Kochkin D. V.,Galishev B. A.,Titova M. V.,Popova E. V.,Nosov A. M.

Abstract

Abstract A detailed UPLC-ESI-MS study was performed on secondary metabolites in the biomass of a suspension plant cell culture of Turkmenian mandrake (Mandragora turcomanica Mizgir.), which has been maintained for over 30 years. Both compounds widespread in plants (amides of hydroxycinnamic acids with putrescine and feruloyltyramine) and very rare metabolites (glycosides of phenylethylamides of hydroxycinnamic acids) have been identified. The identification of compounds was carried out using ultra-performance liquid chromatography combined with high-resolution mass spectrometry with electrospray ionization (UPLC-ESI-MS) and detection of positive and negative ion modes. Structural analysis of glycosides of phenylethylamides of ferulic acid was carried out on the basis of interpreting MS spectra obtained by fragmentation of protonated molecular ions [M + H]+ of these compounds in the ionization source. Based on the obtained results, the presence of five hexosides of ferulic acid, three of which were with tyramine residues and one each with methoxytyramine and octopamine residues, respectively, in the M. turcomanica cells cultivated in vitro was revealed. One of the detected glycosides belongs to a very rare group of plant metabolites: feruloyltyramine dihexosides. The obtained results confirm the concept developed in the authors' works on the change in specialized metabolism of plant cells cultivated in vitro and indicate that dedifferentiated proliferating cells retain the ability to form a complex set of secondary metabolites, which contradicts the prevailing ideas about the loss or decrease in the intensity of specialized metabolism in plant cell cultures.

Publisher

Pleiades Publishing Ltd

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3