Enhanced Phase Stability and Reduced Bandgap for CsPbI3 Perovskite through Bi3+ and Cl– Co-Doping

Author:

Jiajia Zhang

Abstract

Abstract All-inorganic perovskite CsPbI3 is emerging as a thermally more stable alternative to organic-inorganic hybrid perovskites. However, CsPbI3 perovskite suffers from poor phase stability at ambient temperature, and its bandgap is a bit too large as light-harvesting materials in both single-junction and perovskite-on-silicon tandem solar cells. In this study, we propose an electrically neutral co-doping strategy that equimolar Bi3+ (occupying the Pb site) and Cl (occupying the interstitial site) are incorporated into CsPbI3. Unlike the individual Bi3+ or Cl doping, the neutral co-doping can avoid stimulating the formation of the detrimental native defects. Our first-principles calculations suggest that the co-doped systems are stable at ambient temperature and possess narrower bandgaps compared with the undoped CsPbI3. Moreover, the electron and hole states are spatially separated in these multiple-ion compounds.

Publisher

Pleiades Publishing Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3