Bioaugmentation of Anammox Activated Sludge with a Nitrifying Bacterial Community as a Way to Increase the Nitrogen Removal Efficiency

Author:

Pimenov N. V.,Nikolaev Yu. A.,Dorofeev A. G.,Grachev V. A.,Kallistova A. Yu.,Mironov V. V.,Vanteeva A. V.,Grigor’eva N. V.,Berestovskaya Yu. Yu.,Gruzdev E. V.,Begmatov Sh. A.,Ravin N. V.,Mardanov A. V.

Abstract

Abstract Bioaugmentation, i.e., increasing the abundance of certain microorganisms in the community by adding appropriate cells or establishing the conditions promoting their growth, is widely used in environmental technologies. Its application for launching of the anammox reactors is usually limited to introduction of anammox bacteria. We expected addition of nitrifiers during anammox bioreactor launching to stimulate the anammox process due to rapid production of nitrite, which anammox bacteria use for ammonium oxidation. The present work investigated the effect of introduction of a nitrifying community on the composition and activity of the microbial community in an anammox reactor. At the time of inoculation of a laboratory SBR reactor, an active nitrifying community (5 days old) (ASB) (bioaugmenting activated sludge, ASB) containing group I nitrifiers, primarily Nitrosospira, was added (1 : 100 by biomass) to anammox activated sludge (ASA) stored for 1 month at 4°C and exhibiting low metabolic activity. The use of ASB resulted in increased efficiency of nitrogen removal. While noticeable nitrogen removal in the control (7%) was observed since day 11 of incubation, nitrogen removal in the experimental reactor began on day 4 at the level of 20%. Nitrogen removal after 30 days of incubation was ~60% in the experiment and 20% in the control. The rate of ammonium oxidation in the presence of ASB increased due to activity of nitrifying bacteria (during the first 10 days of operation) and anammox bacteria of the genus Brоcadia, which were already present in ASA (throughout all period of operation). Activity of group II nitrifiers (genera Nitrobacter and Nitrococcus), which were present in ASB, prevented accumulation of nitrite, which in high concentrations is toxic to both nitrifiers and anammox bacteria. High activity of the Nitrosospira nitrifiers introduced with ASB probably provided the anammox bacteria with one of the substrates (nitrite), promoting their rapid growth. During subsequent operation of the reactor, nitrifiers of the genus Nitrosomonas from the initial ASA community were mainly responsible for growth of the anammox bacteria. Thus, ASA bioaugmentation at the loading of the anammox reactor by active nitrifiers resulted in significantly improved efficiency of ammonium removal via the anammox process and accelerated transition of the reactor to the working mode.

Publisher

Pleiades Publishing Ltd

Subject

Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3