Author:
Karpenkov O.,Sossinsky A. B.
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference14 articles.
1. S. Bryson, M. H. Freedman, Z.-X. He, and Z. Wang, “Möbius Invariance of Knot Energy,” Bull. Amer. Math. Soc. (N.S.) 28(1), 99–103 (1993).
2. M. H. Freedman and Z.-X. He, “Links of Tori and the Energy of Incompressible Flows,” Topology 30(2), 283–287 (1991).
3. M. H. Freedman, Z.-X. He, and Z. Wang, “Möbius Energy of Knots and Unknots,” Ann. of Math. 139(1), 1–50 (1994).
4. W. Fukuhara, Energy of a Knot, The fête of topology (Academic Press, 1988), pp. 443–451.
5. O. Karpenkov, “Energy of a Knot: Variational Principles,” Russ. J. Math. Phys. 9(3), 275–287 (2002).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Remembering Patrick Dehornoy;Journal of Knot Theory and Its Ramifications;2022-07
2. Normal Forms of Unknotted Ribbons and DNA;Russian Journal of Mathematical Physics;2018-04
3. Concepts of polymer statistical topology;Topology and Condensed Matter Physics;2017
4. On the normal form of knots;Russian Journal of Mathematical Physics;2014-10
5. Euler elasticae in the plane and the Whitney-Graustein theorem;Russian Journal of Mathematical Physics;2013-07