Author:
Jiang Yi,Wang Rongyao,Han Lei,Wang Zhaoxin
Reference32 articles.
1. Zerbst, U., Lunden, R., and Edel, K.O., Introduction to the damage tolerance behavior of railway rails—A review, Eng. Fracture Mech., 2009, vol. 17, pp. 2563–2601.
2. Cannon, D.F., Edel, K.O., Grassie, S.L., and Sawley, K., Rail defects: An overview, Fatigue & Fracture Eng. Mater. & Struct., 2010, vol. 26, pp. 865–886.
3. Jiang, Y., Wang, H., and Tian, G., Fast classification for rail defect depths using a hybrid intelligent method, Optik—Int. J. Light Electron. Opt., 2018, vol. 180, pp. 455–468.
4. Yang, H.F., Wang, Y.Z., Hu, J.Y., et al., Deep learning and machine vision-based inspection of rail surface defects, IEEE Trans. Instrum. Meas., 2022, vol. 71, pp. 1–14.
5. Lidén Tomas, Railway infrastructure maintenance—A survey of planning problems and conducted research, Transp. Res. Proc., 2015, vol. 10, pp. 574–583.