1. Gasnikov, A.V., Lagunovskaya, A.A., Usmanova, I.N., and Fedorenko, F.A., Gradient-Free Proximal Methods with Inexact Oracle for Convex Stochastic Nonsmooth Optimization Problems on the Simplex, Autom. Remote Control, 2016, vol. 77, no. 11, pp. 2018–2034.
2. Lugosi, G. and Cesa-Bianchi, N., Prediction, Learning and Games, New York: Cambridge Univ. Press, 2006.
3. Agarwal, A., Dekel, O., and Xiao, L., Optimal Algorithm for Online Convex Optimization with Multi- Point Bandit Feedback, COLT, Proc. 23rd Ann. Conf. on Learning Theory, Haifa, 2010, pp. 28–40.
4. Sridharan, K., Learning from an Optimization Viewpoint, PhD Dissertation, Toyota Technol. Inst. Chicago, 2011, arXiv:1204.4145.
5. Bubeck, S., Introduction to Online Optimization, Princeton: Princeton Univ., 2011. http://www. princeton.edu/~sbubeck/BubeckLectureNotes.pdf.