1. Bakhyshev, Sh.M., One-Dimensional Inverse Thermoelasticity Problems, IFZh, 1993, vol. 65, no. 1, pp. 98–104.
2. Tikhonov, A.N., Akimenko, V.V., Kal’ner, V.D., Glasko, V.B., Kal’ner, Yu.V., and Kulik, N.I., On Planning Some Physical Experiment on Determination of Material Parameters by Mathematical Methods, IFZh, 1991, vol. 61, no. 2, pp. 181–186.
3. Budnik, S.A., Nenarokomov, A.V., Prosuntsov, P.V., and Titov, D.M., Identification of Mathematical Models of Thermoelasticity. 1. Analysis and Formulation of Problem, TPT, 2017, no. 3, pp. 118–125.
4. Matsevityi, Yu.M., Strel’nikova, E.A., Povgorodnii, V.O., Safonov, N.A., and Ganchin, V.V., Methodology for Solving Inverse Problems of Thermal Conductivity and Thermal Elasticity for Thermal Process Identification, IFZh, 2021, vol. 94, no. 5, pp. 1134–1141.
5. Sakalauskas, E.I. and Spyachunas, G.B., Application of Walsh Functions to Construction of Explicit Projection Algorithm for Identification of Distributed Systems, IFZh, 1988, vol. 54, no. 5, pp. 840–845.