1. A. G. Kachurovskii and I. V. Podvigin, “Measuring the rate of convergence in the Birkhoff ergodic theorem,” Math. Notes 106 (1), 52–62 (2019).
2. I. V. Podvigin, “Lower bound of the supremum of ergodic averages for $${\mathbb{Z}^d}$$ and $${\mathbb{R}^d}$$-actions,” Sib. Èlektron. Mat. Izv. 17, 626–636 (2020).
3. A. G. Kachurovskii, I. V. Podvigin, and A. A. Svishchev, “Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time,” Mat. Tr. 24 (2), 65–80 (2021).
4. G. Pólya and G. Szegö, Isoperimetric Inequalities of Mathematical Physics, in Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 1951), Vol. 27.
5. B. Ya. Levin, Distribution of Roots of Entire Functions (Gostekhizdat, Moscow, 1956) [in Russian].