New Congruences for Broken $$k$$-Diamond and $$k$$ Dots Bracelet Partitions
-
Published:2022-10
Issue:3-4
Volume:112
Page:393-405
-
ISSN:0001-4346
-
Container-title:Mathematical Notes
-
language:en
-
Short-container-title:Math Notes
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference13 articles.
1. G. E. Andrews and P. Paule, “MacMahon’s partition analysis XI: Broken diamonds and modular forms,” Acta Arith. 126, 281–294 (2007).
2. M. D. Hirschhorn and J. A. Sellers, “On recent congruence results of Andrews and Paule for broken $$k$$-diamonds,” Bull. Aust. Math. Soc. 75, 121–126 (2007).
3. X. W. Xia, “More infinite families of congruences modulo 5 for broken 2-diamond partitions,” J. Number Theory 170, 250–262 (2017).
4. S. H. Chan, “Some congruences for Andrews–Paule’s broken 2-diamond partitions,” Discrete Math. 308, 5735—5741 (2008).
5. P. Paule and S. Radu “Infinite families of strange partition congruences for broken 2-diamonds,” Ramanujan J. 23, 409–416 (2010).