1. J. Bourgain, “On the distribution of polynomials on high dimensional convex sets,” in Geometric Aspects of Functional Analysis, Lecture Notes in Math. (Springer, Berlin, 1991), Vol. 1469, pp. 127–137.
2. F. Nazarov, M. Sodin, and A. Vol’berg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions,” Algebra Analiz 14 (2), 214–234 (2002) [St. Petersburg Math. J. 14 (2), 351–366 (2003)].
3. S. G. Bobkov, “Some generalizations of the results of Yu. V. Prokhorov on Khinchin-type inequalities for polynomials,” Teor. Veroyatnost. Primenen. 45 (4), 745–748 (2000) [Theory Probab. Appl. 45 (4), 644–647 (2002)].
4. S. G. Bobkov and J. Melbourne, “Localization for infinite-dimensional hyperbolic measures,” Dokl. Ross. Akad. Nauk 462 (3), 261–263 (2015) [Dokl. Math. 91 (3), 297–299 (2015)].
5. L. M. Arutyunyan and E. D. Kosov, “Estimates for integral norms of polynomials on spaces with convex measures,” Mat. Sb. 206 (8), 3–22 (2015) [Sb. Math. 206 (7–8), 1030–1048 (2015)].