On the Exponential Diophantine Equation $$(a^{n}-2)(b^{n}-2)=x^{2}$$
-
Published:2022-06
Issue:5-6
Volume:111
Page:903-912
-
ISSN:0001-4346
-
Container-title:Mathematical Notes
-
language:en
-
Short-container-title:Math Notes
Author:
Şiar Z.,Keskin R.
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference16 articles.
1. L. Szalay, “On the Diophantine equation $$(2^{n}-1)(3^{n}-1)=x^{2}$$,” Publ. Math. Debrecen 57, 1-9 (2000).
2. L. Hajdu and L. Szalay, “On the Diophantine equation $$(2^{n}-1)(6^{n}-1)=x^{2}$$ and $$(a^{n}-1)(a^{kn}-1)=x^{2}$$,” Period. Math. Hung. 40 (2), 141–145 (2000).
3. J. H. E. Cohn, “The Diophantine equation $$(a^{n}-1)(b^{n}-1)=x^{2}$$,” Period. Math. Hung. 44 (2), 169–175 (2002).
4. L. Lan and L. Szalay, “On the exponential Diophantine equation $$(a^{n}-1)(b^{n}-1)=x^{2}$$,” Publ. Math. Debrecen 77, 1–6 (2010).
5. Zhao-Jun Li and M. Tang, “A Remark on paper of Luca and Walsh,” Integers 11. (2011).