1. S. M. Voronin, “On analytic continuation of certain Dirichlet series,” in Trudy Mat. Inst. Steklov, Vol. 157: Number Theory, Mathematical Analysis, and Applications. Collection of Papers on the Occasion of Academician Ivan Matveevich Vinogradov Nineteenth Birthday (1981), pp. 25–30 [Proc. Steklov Inst. Math., No. 3, 25–30 (1983)].
2. A. Selberg, “Old and new conjectures and results about a class of Dirichlet series,” in Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori, 1989 (Univ. Salerno, Salerno, 1992), pp. 367–385; in Collected Papers, Vol. II (Springer-Verlag, Berlin, 1991), pp. 47–63.
3. J. Kaczorowski, “Axiomatic theory of L-functions: the Selberg class,” in Lecture Notes in Math., Vol. 1891: Analytic Number Theory (Springer-Verlag, Berlin, 2006), pp. 133–209.
4. J. Kaczorowski and A. Perelli, “The Selberg class: A survey,” in Number Theory in Progress, Zakopane-Kościelisko, 1997 (de Gruyter, Berlin, 1999), Vol. 2, pp. 953–992.
5. A. Perelli, “A survey of the Selberg class of L-functions, Part I,” Milan J. Math. 73, 19–52 (2005).