Author:
Stonyakin F. S.,Titov A. A.,Makarenko D. V.,Alkousa M. S.
Reference14 articles.
1. H. Bauschke, J. Bolte, and M. Teboulle, “A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited, and applications,” Math. Oper. Res. 42 (2), 330–348 (2017).
2. R.-A. Dragomir, A. Taylor, A. d’Aspremont, and J. Bolte, “Optimal complexity and certification of Bregman first-order methods,” Math. Program. Ser. A 194 (1-2), 41–83 (2022).
3. H. Lu, R. Freund and Yu. Nesterov, “Relatively smooth convex optimization by first-order methods, and applications,” SIAM J. Optim. 28 (1), 333–354 (2018).
4. R.-A. Dragomir, Bregman Gradient Methods for Relatively Smooth Optimization, Doctoral Dissertation https://hal.inria.fr/tel-03389344/document (2021).
5. S. Julien, M. Schmidt, and F. Bach, A Simpler Approach to Obtaining an $$O(1/t)$$ Convergence Rate for the Projected Stochastic Subgradient Method, arXiv: 1212.2002 (2012).