Author:
Klyndyuk A. I.,Chizhova E. A.,Latypov R. S.,Shevchenko S. V.,Kononovich V. M.
Abstract
Abstract
Composite thermoelectric materials based on layered calcium cobaltite Ca3Co4O9 + δ doped with copper particles were synthesized by two-step sintering, and their microstructure, and electrotransport and thermoelectric properties were studied. It was determined that the introduction of copper particles into the ceramics improves their sinterability at moderate sintering temperatures (Tsint ≤ 1273 K), leading to a decrease in the porosity of the samples and an increase in their electrical conductivity and power factor, whereas the oxidation of copper to less conductive copper(II) oxide significantly decreases the electrical conductivity and power factor of the ceramics sintered at elevated temperatures (Tsint ≥ 1373 K). The power factor is maximum for the Ca3Co4O9 + δ + 3 wt % Cu ceramic sintered at 1273 K (335 μW/(m K2) at a temperature of 1100 K), which is by a factor of 2.3 higher than the power factor of the base material Ca3Co4O9 + δ with the same thermal history (145 μW/(m K2) at 1100 K) and more than 3 times higher than the power factor of the Ca3Co4O9+δ ceramic synthesized by the conventional solid-phase method.
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Materials Science (miscellaneous)
Reference32 articles.
1. Oxide Thermoelectrics. Research Signpost, Ed. by K. Koumoto, I. Terasaki, and N. Murayama (Trivandrum, Research Signpost, India, 2002).
2. A. C. Masset, C. Michel, A. Maignan, et al., Phys. Rev. 62, 166 (2000). https://doi.org/10.1103/PhysRevB.62.166
3. P.-H. Xiang, Y. Kinemuchi, H. Kaga, et al., J. Alloys Compd. 454, 364 (2008). https://doi.org/10.1016/j.jallcom.2006.12.102
4. S. Katsuyama, Y. Takiguchi, and M. Ito, J. Mater. Sci. 43, 3553 (2008). https://doi.org/10.1007/s10853-008-2561-x
5. A. I. Klyndyuk, I. V. Matsukevich, M. Janek, et al., Russ. J. Appl. Chem. 93, 1126 (2020). https://doi.org/10.1134/S1070427220080030
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献