Drought Forecasting of Seyhan and Ceyhan Basins Using Machine Learning Methods
-
Published:2024-02
Issue:1
Volume:51
Page:12-26
-
ISSN:0097-8078
-
Container-title:Water Resources
-
language:en
-
Short-container-title:Water Resour
Author:
Alkan Ali,Tombul Mustafa
Publisher
Pleiades Publishing Ltd
Reference53 articles.
1. Achite, M., Jehanzaib, M., Elshaboury, N., Kim, T.-W., Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria, 2022, Water, vol. 14, no. 3, p. 431. https://doi.org/10.3390/w14030431 2. Apostolidis-Afentoulis, V., SVM classification with linear and RBF kernels, 2015. https://doi.org/10.13140/RG.2.1.3351.4083 3. Aydin, C., Comparison of Data-Driven Predictive Maintenance Models fora Manufacturing, 2021, Ankara, Fen Bilimleri Enstitüsü. 4. Belayneh, A. and Adamowski, J., Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression, Appl. Comput. Intell. Soft Comput., 2012, pp. 1–13. https://doi.org/10.1155/2012/794061 5. Bishop, C.M., Neural Networks for Pattern Recognition, 1995, Oxford Univ. Press.
|
|