1. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” Proceedings of the 32nd International Conference on Neural Information Processing Systems (2018), pp. 6572–6583.
2. W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud, “FFJORD: Free-form continuous dynamics for scalable reversible generative models,” Proceedings of the International Conference on Learning Representations (2019).
3. J. Gusak, L. Markeeva, T. Daulbaev, A. Katrutsa, A. Cichocki, and I. Oseledets, “Towards understanding normalization in neural ODEs,” International Conference on Learning Representations (ICLR), Workshop on Integration of Deep Neural Models and Differential Equations (2020).
https://openreview.net/forum?id=mllQ3QNNr9d.
4. T. Daulbaev, A. Katrutsa, J. Gusak, L. Markeeva, A. Cichocki, and I. Oseledets, “Interpolation technique to speed up gradients propagation in neural ODEs,” (2020). arXiv:2003.05271.
5. Reduced Order Methods for Modeling and Computational Reduction, Ed. by A. Quarteroni and G. Rozza (Springer, 2014), pp. 477–512.