1. B. Buchberger, PhD Thesis (Univ. of Innsbruck, Innsbruck, 1965).
2. J.-C. Faugère, “A new efficient algorithm for computing Gröbner basis (F4),” J. Pure Appl. Alg. 139, 61–88 (1999).
3. J.-C. Faugère, “A new efficient algorithm for computing Gröbner basis without reduction to zero (F5),” in Proceedings of International Symposium on Symbolic and Algebraic Computation ISSAC 2002 (ACM. New York, 2002).
4. N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solving overdefined systems of multivariate polynomial equations,” in Advances in Cryptography—EUROCRYPT 2000, Ed. by B. Preneel, LNCS, Vol. 1807 (Springer-Verlag, Berlin, 2000), pp. 392–407.
5. M. Sugita, M. Kawazoe, and H. Imai, “Relation between XL algorithm and Gröbner bases algorithms,” Cryptol. ePrint Archive, Report 2004/112 (2004) ( http://eprint.iacr.org/ )