Subject
Computational Mathematics
Reference5 articles.
1. D. E. Apushkinskaya and S. I. Repin, “Biharmonic obstacle problem: Guaranteed and computable error bounds for approximate solutions,” Comput. Math. Math. Phys. 60 (11), 1823–1838 (2020).
2. L. A. Caffarelli and A. Friedman, “The obstacle problem for the biharmonic operator,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6, 151–184 (1979).
3. J. Frehse, “On the regularity of the solution of the biharmonic variational inequality,” Manuscr. Math. 9, 91–103 (1973).
4. E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, 1970).
5. D. Scherfgen, Integral Calculator. https://www.integral-calculator.com