1. S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman and S. Belongie, “Generalized nonmetric multidimensional scaling,” in International Conference on Artificial Intelligence and Statistics (AISTATS) (2007).
2. G. M. Bergman and G. Grätzer, “Isotone maps on lattices,” Algebra Univers. 68 (1-2), 17–37 (2012).
3. A. Bernig, T. Foertsch and V. Schroeder, “Non standard metric products,” Beiträge zur Algebra und Geometrie 44 (2), 499–510 (2003).
4. M. Bestvina, “R-trees in topology, geometry and group theory,” in R. J. Daverman and R. B. Sher, Eds., Handbook of Geometric Topology, pp. 55–91 (Nort-Holland, Amsterdam, 2002).
5. J. Beyrer and V. Schroeder, “Trees and ultrametric möbius structures,” $$p$$-Adic Num. Ultrametr. Anal. Appl. 9 (4), 247–256 (2017).