The Bohr–Kalckar correspondence principle and a new construction of partitions in number theory
-
Published:2017-09
Issue:3-4
Volume:102
Page:533-540
-
ISSN:0001-4346
-
Container-title:Mathematical Notes
-
language:en
-
Short-container-title:Math Notes
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference9 articles.
1. N. Bohr and F. Kalckar, “On the transformation of atomic nuclei due to collisions with material particles,” Uspekhi Fiz. Nauk 20 (3), 317–340 (1938) [in Russian].
2. G. H. Hardy and S. Ramanujan, “Asymptotic formulae in combinatorial analysis,” Proc. London Math. Soc. (2) 17, 75–115 (1917).
3. F. C. Auluck and D. S. Kothari, “Statistical mechanics and the partitions of numbers,” Math. Proc. Cambridge Philos. Soc. 42, 272–277 (1946).
4. B. K. Agarwala and F. C. Auluck, “Statistical mechanics and the partitions into non-integral powers of integers,” Math. Proc. Cambridge Philos. Soc. 47 (1), 207–216 (1951).
5. V. P. Maslov, “Topological phase transitions in the theory of partitions of integers,” Russian J. Math. Phys. 24 (2), 249–260 (2017).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献