1. A. V. Gasnikov, Modern Numerical Optimization Methods. Universal Gradient Descent Method (MPhTi, Moscow, 2018) [in Russian].
2. O. Devolder, Exactness, Inexactness, and Stochasticity in First-Order Methods for Large-Scale Convex Optimization, PhD Thesis (Université Catholique de Louvain, Louvain-la-Neuve, 2013).
3. G. Lan, Lectures on Optimization. Methods for Machine Learning, http:// pwp.gatech.edu/ guang- hui- lan/ wp-content/uploads/sites/330/2019/08/LectureOPTML.pdf (2019).
4. M. Assran and M. Rabbat, On the Convergence of Nesterov’s Accelerated Gradient Method in Stochastic Settings, arXiv: 2002.12414 (2020).
5. A. V. Gasnikov and A. I. Tyurin, “Fast gradient descent for convex minimization problems with an oracle producing a $$(\delta, L)$$-model of function at the requested point,” Comput. Math. Math. Phys. 59 (7), 1085–1097 (2019).