Author:
Rodionov E. A.,Farkov Yu. A.
Reference14 articles.
1. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992; Izd. RKhD, Izhevsk, 2001).
2. I. Y. Novikov, V. Yu. Protasov, and M. A. Skopina, Theory of Wavelets (Fizmatlit, Moscow, 2005) [in Russian].
3. I. Daubechies and J. C. Lagarias, “Two-scale difference equations II. Local regularity, infinite products of matrices and fractals,” SIAM J. Math. Anal. 23(4), 1031–1079 (1992).
4. D. Colella and C. Heil, “Characterization of scaling functions. Continuous solutions,” SIAM J. Matrix Anal. Appl. 15(2), 496–518 (1994).
5. B. S. Kashin and A. A. Saakyan, Orthogonal Series (AFTs, Moscow, 1999) [in Russian].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Orthogonal and Periodic Wavelets on Vilenkin Groups;Industrial and Applied Mathematics;2019
2. Introduction to Walsh Analysis and Wavelets;Industrial and Applied Mathematics;2019
3. N-Valid trees in wavelet theory on Vilenkin groups;International Journal of Wavelets, Multiresolution and Information Processing;2015-09
4. Wavelet frames on Vilenkin groups and their approximation properties;International Journal of Wavelets, Multiresolution and Information Processing;2015-09
5. Uncertainty principle for the Cantor dyadic group;Journal of Mathematical Analysis and Applications;2015-03