High-Cadence Observations of Magnetic Field Dynamics and Photospheric Emission Sources in the Eruptive Near-the-Limb X4.9 Solar Flare on 25 February, 2014: Evidences for Two-Stage Magnetic Reconnection during the Impulsive Phase

Author:

Sharykin I. N.,Zimovets I. V.,Radivon A. V.

Abstract

Abstract We present an analysis of the pre-limb eruptive X4.9 solar flare on February 25, 2014, by means of which we confirm a hypothesis of the two-stage energy release corresponding to two magnetic reconnection regimes in the flare impulsive phase. This flare is selected, firstly, because of its morphological peculiarities suggesting the presence of the two energy release stages. Secondly, the flare was very suitably located near the solar limb and it was well-observed by many instruments. We performed an analysis of multiwavelength observational data of this flare region to find a connection between changes of the photospheric magnetic field, morphology of hard and soft X-ray sources, dynamics of the photospheric optical emission sources, metric radio bursts, and kinematics of an eruptive structure. The simultaneous usage of the line-of-sight and vector Helioseismic Magnetic Imager (HMI) magnetograms allowed us to trace magnetic field changes during the flare impulsive phase with high temporal resolution. HMI filtergrams allowed to trace displacement of the photospheric emission sources, associated with the magnetic reconnection, with very high temporal resolution up to 2 s. Using all observational results, we argue that the found flare stages are characterized by the following magnetic reconnection regimes. The first stage is predominantly characterized by the three-dimensional zipping reconnection in the strong sheared magnetic field assuming the tether-cutting geometry. The second stage corresponds to the so-called “standard” model of eruptive flares with the quasi-two-dimensional reconnection below the eruptive flux-rope. All observational peculiarities of these two stages are discussed in details.

Publisher

Pleiades Publishing Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3