Båth’s Law Derived from Gutenberg-Richter’s Law: a Simple Deduction with Implications for Earthquake Sequence Analysis
-
Published:2024-06
Issue:3
Volume:18
Page:290-294
-
ISSN:0742-0463
-
Container-title:Journal of Volcanology and Seismology
-
language:en
-
Short-container-title:J. Volcanolog. Seismol.
Author:
Wu Zhongliang,Liu Yue
Publisher
Pleiades Publishing Ltd
Reference37 articles.
1. Aki, K., Maximum likelihood estimate of b in the formula log(N) = a – bM and its confidence limits, Bull. Earthq. Res. Inst., Univ. Tokyo, 1965, vol. 43, pp. 237–239. 2. Baranov, S.V. and Shebalin, P.N., Forecasting aftershock activity: 3. Båth's dynamic law, Izv.,
Phys. Solid Earth, 2018, vol. 54, pp. 926–932. https://doi.org/10.1134/S1069351318060022 3. Baranov, S.V., Narteau, C., and Shebalin, P.N., Modeling and prediction of aftershock activity, Surveys in Geophysics, 2022, vol. 43, pp. 437–481. https://doi.org/10.1007/s10712-022-09698-0 4. Båth, M., Lateral inhomogeneities of the upper mantle, Tectonophysics, 1965, vol. 2, pp. 483–514. 5. Chan, C.-H. and Wu, Y.-M., Maximum magnitudes in aftershock sequences in Taiwan, J. Asian Earth Sci., 2013, vol. 73, pp. 409–418. https://doi.org/10.1016/j.jseaes.2013.05.006
|
|